

TABLE OF CONTENTS

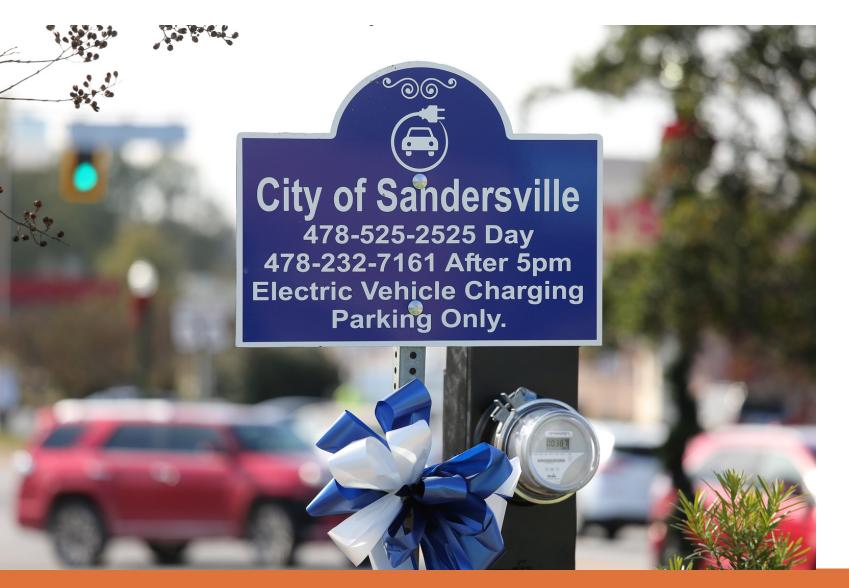
3	INTRODUCTION
4	RESEARCH SUMMARY
5	ASSESSING A COMMUNITY'S NEED FOR ELECTRIC VEHICLE INFRASTRUCTURE
6	WHO SHOULD BE AT THE TABLE?
7	WAYS FOR GEORGIA COMMUNITIES TO DDRESS THEIR EV INFRASTRUCTURE NEEDS
10	UNIVERSITY OF GEORGIA INITIATIVES
11	TYPES OF ELECTRIC VEHICLES
12	TYPES OF CHARGERS
15	HARGER GOALS, PLACEMENT AND SUPPORT WITHIN THE COMMUNITY
17	ECONOMIC IMPACT OF EM ON GEORGIA COMMUNITIES
18	EVOLVING LANDSCAPE
19	GLOSSARY
20	SOURCES

INTRODUCTION

The state of Georgia has recently made significant changes that have the potential to make them a national leader in the electric mobility movement. In 2021, Governor Brian P. Kemp announced Georgia's electric mobility (EM) initiative that aims to position and make Georgia the leader in the industry. This is not just an isolated idea; it's part of a broader trend that rural communities across the state should examine. The U.S. electric mobility market was valued at a staggering \$28.5 billion in 2020 and is expected to grow by nearly 20% annually from 2021 to 2028. IHS Markit predicts that there will be 130 different electric vehicle (EV) models available in the U.S. by 2026. Overall, the number of EVs on the road in the U.S. is growing exponentially and this trend will continue.

Georgia is strategically positioned to benefit from this trend and emerge as a leader in the industry. "Georgia has a proven record of investing early in the resources and infrastructure needed to connect it to the world and develop jobs of the future," said Governor Kemp.

The state is offering substantial incentives to encourage EV behavior, including \$700 million in local property tax breaks and a comprehensive \$1.5 billion package that includes tax breaks, grants, free land, and infrastructure development for the upcoming Georgia Rivian facility in Morgan County. Rivian's incentive package is the second largest in Georgia state history, behind The Hyundai Motor Group's \$1.8 billion package in similar benefits for its \$5.5 billion, 3,000-acre EV assembly plant in Bryan County. Electric mobility in Georgia is not going away because there are *real dollars motivating people to change their consumer behaviors*.


The expected impact of the electric mobility movement in Georgia is immense. For instance, the Rivian facility is projected to employ 7,500 workers, leading to the creation of thousands of additional jobs in related industries. It's not just a passing phase; it's a substantial economic opportunity driven by financial incentives. Rural communities in Georgia must recognize the lasting importance of this movement because it is a potential path to prosperity.

As Georgia strives to be a leader in the EM industry, rural communities have a unique avenue to be early adopters of the evolving EV landscape. This is an opportunity that communities should consider, as there is a significant opportunity that will follow the dramatic transformation of electric mobility *nationally*.

RESEARCH SUMMARY

For this guidebook, we examined the need for EV infrastructure in a community, taking into account the significant investment required and various factors crucial to its implementation. There are several key topics discussed, including the vitality of a needs assessment, who should be at the table when making decisions, availability of power and utility for charging stations, matching electric vehicle infrastructure to community development, the availability of resources for Georgia communities for EV infrastructure, initiatives from the University of Georgia, types of electric vehicles, charger types and costs, charger goals, placement and support recommendations, and the economic impact of electric mobility.

This research emphasizes the potential for EV infrastructure as a driving factor of tourism growth and economic development within rural communities. Additionally, this research includes recommendations, best practices, failures, and success stories from states that have been at the forefront of the EV movement: Oregon, Utah and Colorado.

ASSESSING A COMMUNITY'S NEED FOR ELECTRIC VEHICLE INFRASTRUCTURE

The opportunity to take advantage of the evolving electric mobility landscape in Georgia is an exciting economic development strategy. The first step on this journey is for a community to decide it wants to explore charging.

It is important to then consider the *need* for such change, as the investment can be considered relatively substantial in comparison to other projects. There are currently many incentives in the state (i.e. rebates, grants, various programs) to help fund charging installation.

If there is significant interest within a community in adding a charging station(s), there are many considerations to make sure it is a.) practical and b.) implemented correctly. Making sure a community is *capable* of such change is also very important to the process.

To assess the practicality or to address the need in the community, it is important to match the investment of charging infrastructure to the current opportunity and development in the community (i.e. restaurants, hotels, parking garages). *Charging infrastructure is just one strategy to facilitate economic growth*.

There are specific tools and resources available in the state that greatly assist in assessing the *need*: GA Power offers a free, predictive tool that considers how many EVs will be in the region in the next few years and locates how many chargers (if any) an area should install. Any county can use this resource, *regardless of their GA Power customer status*.

Other recommendations:

State DOTs forecast traffic to assist in the implementation of transportation system improvements. This data can be combined with predicted EV ownership statistics as well as other predictive tools (i.e. GA Power) to further develop or strengthen the municipality's opinion on their infrastructure needs.

Another one of the main requirements for EV infrastructure is power/utility availability. The charging stations require a significant power source nearby – it is not comparable to the electrical needs of a household appliance. Along with this, communities should be aware of how much energy-specific chargers require and the rates they will have to pay to maintain power circulation to those respective stations.

 $oldsymbol{4}$

After the need is considered and decisions are made to build stations, the target areas should be strategically located within the respective communities to avoid any contention with the private sector. Not every municipality will have to install charging infrastructure on their own, as the private sector will organically provide stations as well.

For example, it is important to note the placement strategy of Tesla. Many EV users prefer Tesla's speed and reliability, so communities should avoid competition by not installing chargers near these charging stations. Tesla is a leader in the EV industry, and communities must consider the activities of the private sector as a whole in their plans.

These entities should not compete but rather collaborate to ensure EM eventually reaches every corner of the state. "By bringing together industry leaders and our public and private sector partners, we are proactively developing a roadmap that will keep Georgia at the forefront of electric mobility and

WHO SHOULD BE AT THE TABLE?

The following parties should be engaged in conversations surrounding charging infrastructure in terms of a needs assessment:

- Community Leaders
- Public Works Department
- Chamber of Commerce
- Law Enforcement
- Local Industries
- Regional Commission
- Government Fleets

It is crucial to have these people at the table when making decisions regarding electric mobility. This is an exciting opportunity, and everyone should *want* to be a part of it.

Furthermore, the Sandersville community found it successful to have a single point-person championing the installation development. We highly recommend this tactic to ensure efficiency. It is unlikely that every member of a community will be on board with making community changes alongside the EV movement, so having a point-person at the helm driving execution is crucial. Ideally, this person has community-wide comprehension, communication and connections.

WAYS FOR GEORGIA COMMUNITIES TO ADDRESS THEIR EV INFRASTRUCTURE NEEDS

If one seeks to install a charging station in their community, there are public and private resources in place that could aid them in their effort to expand electric mobility to their community. Many communities across Georgia, specifically rural communities, have different ways to access charging stations according to their electrical infrastructure.

Most communities in Georgia are supported by Georgia Power. Some communities, especially in rural areas, rely on other electrical infrastructure utilities like MEAG and EMC to source their electrical power. Electrical infrastructure is key for communities to understand how viable a charging station could be in their area. It is extremely important, as highlighted earlier, to run feasibility tests to learn if both the community and the electrical grid can support these charging stations. Once the communities have done the proper planning and tests, there are several public and private resources that they can utilize.

National Electric Vehicle Infrastructure (NEVI)

Specifically for Georgia, the Inflation Reduction Act gave the Georgia Department of Transportation and Economic Development around \$135 million for charging station infrastructure. To utilize this federal funding from the National Electric Vehicle Infrastructure (NEVI), Georgia formulated a plan to deploy a network of EV charging stations that will be convenient and reliable for all users. One example of this is Georgia's placement of charging stations in state parks. They have installed charging stations in six parks so far and look to address the remaining 49 parks in the future. This is only one segment of the NEVI plan. It will also lead to four level three (DCFC) chargers being placed every 50 miles on federal highways across Georgia.

Most of the NEVI plan is an established plan that will be implemented across the state. This means that most communities will not be able to access funding for installing charging stations in their

 $oldsymbol{6}$

town. It is important to note, however, that communities looking for charging stations nearby could benefit from this NEVI plan and have affordable access. For those who will not benefit from this state plan, there are other funding resources available when looking to install charging stations.

Georgia Power

Another way for communities to access electric charging resources is through public support and private resources. There are several resources in Georgia that a community can use when looking to install charging stations in their area. The most accessible and easiest way to find assistance is through Georgia Power. Georgia Power is the largest provider of electrical infrastructure across the state of Georgia. There are some communities they do not reach with their electrical grid, but they provide services and maintenance to *all areas in Georgia*. In their partnership with ChargePoint, they provide the most powerful and sustainable charging stations at the best cost for customers.

When it comes to installation and maintenance, Georgia Power has its customers covered. They offer two services for communities and commercial businesses. This includes:

- Plug-In Ready: The customer pays a one-time capital expense; Georgia Power installs the equipment and the customer owns the charger.
- Plug-In Service: The customer has to put no money down, and a monthly electric vehicle charging service appears as a line item on their utility bill. Georgia Power owns, operates and maintains the charging station in this service.

If one seeks to learn more about these services, they can schedule a free electrification consultation with Georgia Power on their website.

From a funding and financial perspective, there are several grants and rebates that can help communities in Georgia save on the purchase and installation of charging stations. Specific grants, rebates, and tax credits are listed below:

Public

EV Charging Station Tax Credit: All eligible businesses may claim an income tax credit for the purchase, lease, and installation of qualified EV charging stations. The tax credit is for 10% of the cost of EV charging stations, up to \$2,500.

Federal Electric Car Tax Credit: Those purchasing an EV vehicle in Georgia may qualify for a tax credit of up to \$7,500. The EV vehicle has to be manufactured in the U.S.; the tax is subject to price and family income thresholds. And recently announced for 2023: used EVs priced up to \$25,000 can receive up to \$4,000 in tax credit.

Private

EV Time-Of-Use Rate Incentive – Georgia Power: For customers looking to save on charging rates, Georgia Power offers a cheaper Plug-in Electric vehicle rate for charging between 11 p.m. and 7 a.m. to encourage nighttime EV charging. Georgia Power charges customers 1.7 cents per hour of charging during these hours, which is very low compared to 23 cents on-peak and 7.9 cents off-peak. Customers can sign up on the Georgia Power website.

EV Commercial and Residential Charging Station Rebate – Georgia Power: Georgia Power offers residential customers a \$250 rebate for Level 2 EV chargers. They also offer commercial customers a \$500 rebate per charger for up to five chargers. This is offered between 1/1/23 and 12/31/23, but Georgia Power seeks to keep this rebate for their customers in the future. One must apply on the Georgia Power website to be eligible.

EV Charging Make Ready Support – Georgia Power: This offer helps communities with financial struggles jump the hurdle of paying for EV charging stations by installing stations in their area in an affordable manner. To be eligible, this program is designed for chargers being installed that are public-facing or part of public fleets serving the public good. This means that this project has to involve infrastructure to support EV charging in public locations or public fleets in general. The Make Ready program investments will be capped at \$200,000 per project. If one desires to receive this funding, they must apply to Georgia Power to see if their community is eligible.

National Electric Highway Coalition (NEHC): Georgia Utilities have joined together to create a network of direct current fast charging (DCFC) stations connecting major highway systems from the Atlantic Coast to the Pacific of the U.S. NEHC members have agreed to ensure efficient and effective fast-charging deployment plans that enable long-distance EV travel, avoiding duplication among coalition utilities and complementing existing corridor DCFC sites. They seek to provide EV DCFC by the end of 2023 and help ensure the transition to EVs is seamless for drivers.

These incentives, rebates, and forms of support may exist for long, so rural communities need to act quickly to take advantage of the small window of opportunity amidst the rapidly changing EV landscape.

^{*}Georgia does not offer any tax credits, rebates or other incentives to buyers of used electric vehicles or installing charging stations.

UNIVERSITY OF GEORGIA INITIATIVES

Over the past two years, Georgia Power has partnered with the University of Georgia to host an Annual Electric Mobility Summit. The focus of this summit is to discuss the advancement of electric mobility in the state and the educational programs necessary to support its growth.

Georgia has become a hub of investment in electric mobility as SK Battery, Rivian, Hyundai, and other industry leaders have moved into the state to start manufacturing electric vehicles and electric batteries. As the state continues to progress its electric mobility presence, the University of Georgia seeks to be a part of this expansion as an educational institution, looking to find new innovative ways to expand its educational footprint in EM at the College of Engineering.

In the previous summit (last April), Georgia Power donated \$5 million to the University of Georgia to create scholarships, support electric mobility research, and build statewide partnerships in the field of electric mobility. This donation will help the University of Georgia create an array of programs related to electric transportation and help expand UGA's E-Mobility Certificate Program. It will also help support UGA's E-Mobility Community Partnerships by providing new resources that UGA can utilize to facilitate and maintain relationships with communities and industry groups, placing an emphasis on rural communities that might not have access to electric mobility entirely.

In addition to UGA's E-Mobility Community Partnership, last year, the university announced an Electric Mobility Initiative. This initiative was created from Georgia Power's donation and provides seed funding for new EM projects. Furthermore, this initiative also seeks to bring together leaders in EM to discuss innovative approaches to electric mobility across Georgia. Over the next couple of months, UGA will launch a faculty hiring initiative to recruit 10 leading researchers in the field of electric mobility to its campus.

Communities looking to get involved with UGA's E-Mobility Community Partnerships and their Electric Mobility Initiative should get in contact with both the College of Engineering and the Archway Partnership to learn more about these initiatives.

The Carl Vinson Institute of Government

The Carl Vinson Institute of Government is another resource at the University of Georgia that promotes excellence in both state and local government through education, assistance, and research analysis to help public officials serve citizens in Georgia. Specifically for electric mobility, there are webinars to help inform local governments and rural communities about electric vehicles and their potential economic

impact. These webinars are meant to bring together local leaders and industry experts for collaborative sessions to discuss successful partnerships, creating charging station infrastructure, and Georgia's EM transition.

Employees at Georgia Power and representatives from the state government join these webinars to help educate local governments about the advantages of electric mobility. For communities looking to learn more about electric mobility and ways they can take advantage of the growing movement, visit the Carl Vinson Institute of Government website to access webinar details. The Carl Vinson Institute of Government hosts around three webinars for electric mobility each year.

TYPES OF ELECTRIC VEHICLES

Battery Electric Vehicles (BEVs): BEVs are powered solely by an electric battery. There is no need for gasoline, diesel, or any other kind of liquid fuel. They produce zero emissions. Electrically charged by fast charging and level two charging.

Examples: Ford F-150 Lightning, Mini Cooper Electric, and Mazda MX-30

Plug-in Hybrid Electric Vehicles (PHEVs): PHEVs are fueled by either electricity or gasoline. They are very similar to a hybrid but have a larger battery and electric charger. They produce low emissions and are electrically charged by level two chargers.

Examples: Jeep Wrangler 4xe, Chevy Volt, and Toyota Prius Plug-in Hybrid

Hybrid Electric Vehicles (HEVs): HEVs utilize an electric motor to help gas-powered engines. No electric chargers are used for this vehicle, as they are completely powered by gasoline. Examples: Honda Accord Hybrid, Ford Fusion, and Toyota Prius

Photo Credit: EVgo

TYPES OF CHARGERS

There are three standard variations in the types of EV chargers. Each of them presents their own strengths and weaknesses. While looking at the different variations in time and speed on charging, it is important to consider that some EV batteries vary in size i.e.) Ford F-150 Lightning, Toyota Prius, etc. The Prius has a significantly smaller battery than a Ford F-150 Lightning, ultimately making it easier to charge.

Photo Credit: WattLogic, 2022

Level 1: Standard Wall Outlet (120-Volt) – The "Home" Charger

The level one charger typically comes with the purchase of an EV. There is not much installation required for this type of charger, as it simply plugs into the wall. This charger is best used for overnight and low mileage charging for battery electric vehicles (BEVs).

Power: Level one chargers can take around 40-50+ hours to charge a BEV to 80% from empty. This charger is recommended for home use, hotel use, and any place where individuals might be staying for extended periods and do not need a full charge quickly.

Shelf Life: The cost of maintenance for these chargers is extremely low. It may cost around \$100 to change the electric outlet that the cord is plugged into, but otherwise, it is relatively cheap to upkeep. The shelf life of this charger is approximately 5-10 years.

Cost: Level 1 chargers typically cost under \$1,000.

Level 2: The Dryer Plug (240- and 208-Volt) – The "Destination" Charger

Level two chargers have to be installed. There is an average of 25 miles per hour of charging, compared to the 5 miles of range per hour with the level one charger. The destination charger is best for reliable overnight charging or leisurely travel pitstops.

The level two charger can be used in residential and commercial settings. For the residential setting, the charger utilizes 240 volts, and for the commercial setting, the charger utilizes 208 volts. The level two charger has also been called the "dryer plug" charger because all it requires is the same style plug that a typical dryer would have in a home.

Power: The level two charger can charge a BEV from zero percent battery to 80% in 4-10 hours, and a PHEV in 1-2 hours. The overall location of the charger will influence how much time people spend charging their cars, as well as increase economic impact. Specifically, placing a level two charger near a downtown area, park, or restaurant could also increase revenue for local businesses.

Shelf Life: Since this type of charger is utilized most often in public places, it generally develops the most wear and tear. This does not have to do with the charger being faulty, rather from its constant use. The shelf life of this charger is approximately 5 years.

Cost: Level two chargers may cost anywhere from \$5,000 to \$7,000.

Direct Current Fast Charger (DCFC) (480-Volt) – The "Commuter" Charger

The Direct Current Fast Charger (DCFC), or the level three charger, is the fastest option for electric vehicle charging. These chargers are for people who commute regularly or need a quick charge. They are also the most expensive charger.

Power: The DCFC provides an average of 250 miles of range per hour of charging. The DCFC can typically get a BEV from zero to 80% battery in 20-30 minutes. These are the types of chargers found at gas stations.

Shelf Life: The DCFC charger requires the most maintenance. Since it is the fastest type of charger, its parts are much more complex. These chargers require filters, cooling systems, and other intricate hardware that requires routine maintenance. It is best practice to establish a service schedule with the charger's manufacturer so the charger can be routinely checked and maintained. The shelf life of this charger is approximately 5 years.

Cost: The DCFC charger can cost from \$50,000 to \$70,000, depending on the current electrical infrastructure of the area.

Cost of Installation and Electrical Infrastructure

LEVEL

Photo Credit: Future Energy, 2021

Another factor to consider when choosing a charger is the electrical infrastructure in the area. Not many commercial spaces, especially in rural communities, have the infrastructure to support the highest-level chargers. For reference, the average price for infrastructure updates to support EV chargers with higher voltage ranges from \$12,000 to \$15,000. The cost aims to update the electrical conduits from the local utility company. For communities looking to install electric charging stations, they should refer to the Georgia Power website and apply for a free consultation to examine the feasibility of installing each charger type.

CHARGER GOALS, PLACEMENT AND SUPPORT WITHIN THE COMMUNITY

Charger Goals

At the end of the day, the fastest charger type one can afford will always bring the most travelers into one's community. However, the type of charger necessary for each community is determined by the community's goals. For example, if Community A seeks to bring more people into its booming downtown area to boost its tourism, it might consider installing a level two charger near those areas. If Community

14 1₅

B aims to become a route stop on a travel corridor, it might install a level three charger outside of a convenience store, fast food restaurant or gas station – visitors will spend much less time in this location. Generally, fast chargers are a tremendous investment, so they may not make sense for rural communities who seek Community A's goal.

Placement

Once a community has selected its charger type and acquired funding, placement logistics are crucial to charger success. Ideally, a charger is placed in an area near accessible restrooms. For safety purposes, chargers should also be on main roads and well-lit corridors, so those traveling feel safe during the day and at night. Chargers near a vending/snacks are more attractive and convenient for travelers as well.

As a general rule of thumb, communities should be aware of the strategies and plans in close proximity. For example, it is important to be aware of nearby Tesla's chargers and the state's coordinated charging plans, such as charging stations in state parks. It is important to understand the landscape or utilize experts who do.

Support

While the state may provide incentives to build charging infrastructure, they do not directly own or operate the networks. This can lead to statewide reliability issues, which ultimately hurts the market and the credibility of specific communities that fail to provide charging services. There are many reasons why charging stations may fail, and it is important to be ready for issues that arise. While utilities or charging brands may provide maintenance services, this doesn't ensure that networks will work consistently.

The electric mobility ecosystem is not uniform – there are many different cars and charger types, as well as other factors such as grid health that may cause the network to fail. One solution that other states have used to address this issue is recommending that communities establish local maintenance technicians. For example, it could take a long time for communities to notice an issue on their own, outsource to a maintenance tech or electrician, order a new part, and then fix an issue. If communities have local techs, they can repair the chargers or report problems quickly.

ECONOMIC IMPACT OF EM ON GEORGIA COMMUNITIES

Tourism is on the rise in Georgia. In 2021, Georgia tourism generated \$64.5 billion in economic impact. In 2022, this number rose to \$73 billion. The state of Georgia received \$39.8 billion in visitor spending in 2022 from 166.9 million domestic visitors – compared to \$34.4 billion from 159.2 domestic visitors in 2021. The rise in tourism creates a wide opportunity for communities to accommodate all types of travelers, including electric vehicle users. With this opportunity comes responsibility; rural communities shoulder a duty to their residents to participate in the EM movement before the possibility passes.

Through evidence from Sandersville's example, installing electric vehicle chargers in communities on Highway 15 can contribute to tourism growth in these communities. Charging stations enable EV owners to explore the state, potentially resulting in increased tourism in local communities. While charging, tourists can discover new destinations, visit regional attractions, and support local establishments. Whether it be via a Level 2 or Level 3 charger, EV chargers have the potential to bring a new consumer base to Highway 15 communities. The goal is to encourage people to spend more time on Highway 15 – showing tourists the rich history and culture these communities have to offer while they charge.

It is important to understand that providing EV charging amenities is simply one strategy that may lead to increased tourism and economic impact; communities still must create places worth visiting with upto-date and working infrastructure.

Additionally, while the highlighted research is focused on Highway 15, these lessons can apply to *any* community or group of communities looking to integrate electric mobility.

EVOLVING LANDSCAPE

The electric mobility landscape is rapidly evolving. Communities that want to take advantage of tax incentives, grants, or other funding programs do not have time to wait; the time for action is now. Utility companies and state governments have already immersed themselves in the space and have become major players when it comes to both EV incentives and rebates. These incentives will not be available for long, as EM has seen exponential growth over the past few years and will continue on its upward trajectory.

As the barriers to entry to the EV industry continue to rise, communities need to take advantage of the benefits available as soon as possible to avoid being left out of the EM movement. With the resources provided, *all communities across the state of Georgia* have the tools to formulate a plan to enter the EV space as early adopters if it is applicable to their community wants and needs.

GLOSSARY

- BEVs Battery Electric Vehicles
- CCS Charger Combined Charging System
- Connector and adapter for EV vehicles to utilize when trying to plug into different charging stations. Provides a solution to all charging requirements.
- DCFC Direct Current Fast Charger
- Level 3 charger that provides the fastest charging option for EVs.
- DoT Department of Transportation
- EM Electric Mobility
- EMC (Electric Membership Cooperatives)
- Member-owned, not-for-profit utilities that serve approximately 4.4 million of Georgia's 10 million residents and 73 percent of the state's land area. Georgia has 41 EMCs in the state that operate the largest distribution network in the state.
- EMIA Electric Mobility and Innovation Alliance
- Statewide initiative led by the Georgia Department of Economic Development between the state government, industries, and electric utilities focused on growing the electric mobility ecosystem in the state.
- EV Electric Vehicle
- GDEcD Georgia Department of Economic Development
- GP Georgia Power
- HEVs Hybrid Electric Vehicles
- HWY 15 State Route 15
- 346-mile-long state highway that begins at Florida and ends at Georgia at the North Carolina State line. Communities that HWY 15 travels through are Folkston, Hoboken, Blackshear, Bristol, Baxley, Higgston, Tarrytown, Soperton Adrian, Wrightsville, Tennille, Sandersville, Warthen, Sparta, Greensboro, Watkinsville, Baldwin, Cornela, Tallulah Falls, Clayton, and Dillard.
- MEAG (Municipal Electric Authority of Georgia)
- MEAG Power was created by the Georgia General Assembly in 1975. It provides reliable, competitive
 wholesale electricity to its 49 member communities in the state of Georgia. These communities,
 however, own and operate their local electric distribution systems.
- NEHC National Electric Highway Coalition
- NEVI National Electric Vehicle Infrastructure Deployment Program
- Derived from the federal infrastructure act. The goal of this program is to deploy a network of EV charging stations that provide a convenient, reliable, affordable, and equitable experience for all users.
- PHEVs Plug-in Hybrid Electric Vehicles

SOURCES

ASPIRE University of Colorado Boulder, Industry & Innovation Day 2023,

https://aspire.usu.edu/

Carl Vinson Institute of Government, E-Mobility Success for Local Governments,

https://cviog.uga.edu/

Colorado.com, Colorado's Scenic & Historic Byways,

https://www.colorado.com/colorados-scenic-historic-byways

DailyEnergyInsider, Georgia Power, Marine partnership pilots EV charging stations,

https://dailyenergyinsider.com/news/40506-georgia-power-marine-partnership-pilots-ev-c

harging-stations/

Duke Energy, Electric Vehicle Chargers,

https://www.duke-energy.com/energy-education/electric-vehicles/charging-your-ev/types-of-chargers

Electrek, Rivian wins in Georgia as EV maker gets green light to build \$5B facility,

https://electrek.co/2023/07/17/rivian-wins-georgia-ev-maker-green-light-5b-facility/

EVgo, Types of Electric Vehicles, https://www.evgo.com/ev-drivers/types-of-evs/

EvoCharge, The Difference Between Level 1 & 2 EV Chargers,

https://evocharge.com/resources/the-difference-between-level-1-2-ev-chargers/

Explore Georgia, Industry Research, https://industry.exploregeorgia.org/research

Future Energy, How Much Do EV Charging Stations Cost?,

https://futureenergy.com/ev-charging/how-much-do-ev-charging-stations-cost/

Georgia Power, Charging on the Go,

https://www.georgiapower.com/residential/save-money-and-energy/products-programs/electric-vehicles/charging-on-the-go.html

Georgia Power, Community Charging Program,

https://www.georgiapower.com/business/products-programs/business-solutions/electric-transportation-

business-programs/community-charging.html

Georgia Power, Electric Transportation Charging Infrastructure,

https://www.georgiapower.com/business/products-programs/business-solutions/electric-transportation-business-programs/ev-charging-for-business.html

Georgia Power, Electric Transportation Make Ready Program Criteria 2023-2025.

https://www.georgiapower.com/content/dam/georgia-power/pdfs/business-pdfs/Branded_ETMR_%20

2023-2025_%20Program_Criteria_041923.pdf

Georgia Power, Electric Vehicle Charger Rebate,

https://www.georgiapower.com/residential/save-money-and-energy/products-programs/electric-vehicles/ev-rebates.html

Georgia Power, Georgia Power, Georgia DNR & Rivian Announce New Electric Vehicle Charging in Georgia's State Parks,

https://www.georgiapower.com/company/news-center/2023-articles/new-electric-vehicle-charging-ingeorgias-state-parks.html

Georgia Power, Georgia Public Service Commission approves Georgia Power's amended 2022 rate request, https://www.georgiapower.com/company/news-center/2022-articles/georgia-power-service-commission-approves-georgia-powers-amended-2022-rate-request.html

Georgia Power, Make Ready Infrastructure Program,

https://www.georgiapower.com/business/products-programs/business-solutions/electric-transportation-business-programs/make-ready.html

Georgia.org, Georgia Electric Mobility and Innovation Alliance, https://www.georgia.org/EMIA

Georgia NEVI, Georgia National Electric Vehicle Infrastructure Deployment Program,

https://nevi-gdot.hub.arcgis.com/

GPB News, Feds approve Georgia DOT plan for EV charging stations,

https://www.gpb.org/news/2022/09/21/feds-approve-georgia-dot-plan-for-ev-charging-stations

Grand View Research, U.S. Electric Mobility Market Size, Share & Trends Report, 2021 - 2028,

https://www.grandviewresearch.com/industry-analysis/us-electric-mobility-market-report#:~:text=The%20U.S.%20 electric%20mobility%20market,critical%20concern%20for%20 government%20authorities.

Office of the Governor, Gov. Kemp Announces Statewide Initiative to Accelerate Georgia's Electric Mobility Industry,

https://gov.georgia.gov/press-releases/2021-07-20/gov-kemp-announces-statewide-initiative-accelerate-georgias-electric

Oregon.gov, ODOT's Community Charging Rebates Program,

https://www.oregon.gov/odot/climate/Pages/communitychargingrebates.aspx

PublicInput, Electric Vehicle Charging Plan, https://publicinput.com/evplan

REV WEST, Regional Electric Vehicle Plan for the West Progress Report,

https://www.naseo.org/Data/Sites/1/documents/tk-news/rev-west 2021-progress-report.pdf

The Center Square, Georgia officials want federal help to pay for electric vehicle infrastructure,

https://www.thecentersquare.com/georgia/article_b9329e86-14f0-11ed-8c84-6743623c6a59.html

UDOT, Utah Statewide EV Charging Plan,

https://drive.google.com/file/d/1lgGn7HTLExuv-6L68tXDupnClTbEj9pO/view

University of Georgia, Georgia Power commits \$5M to e-mobility at UGA,

https://give.uga.edu/georgia-power-e-mobility-at-uga/

U.S. Alternative Fuels Data, Georgia Laws and Incentives,

https://afdc.energy.gov/laws/state_summary?state=ga

USDoT, Charger Types & Speeds,

https://www.transportation.gov/rural/ev/toolkit/ev-basics/charging-speeds

WattLogic, How much does a commercial EV charging station cost?,

https://wattlogic.com/blog/commercial-ev-charging-stations-cost/

Weber State University, EV Training,

https://continue.weber.edu/professional/programs/evtraining/

WSB-TV, Partnership works to bring EV charging stations to rural Georgia,

https://www.wsbtv.com/news/georgia/partnership-works-bring-ev-charging-stations-rural-georgia/NMHWNV6IYBARPI67QXLJRAUE6E/

365 Pronto, Electric Vehicle Charger Maintenance Basics,

https://www.365pronto.com/blog/electric-vehicle-charger-maintenance

Informational Interviews & EV Experts

- Dr. Michelle Elliott, UGA Archway Director and Operations Coordinator
- Sam Perren, UGA Archway Operations Coordinator
- Conni Fennell-Burley, Archway Professional and Sandersville Liaison
- Jayson Johnston, Executive Director for Development Authority of Washington County
- Jeffrey Smith, Sandersville Mayor Pro-Tem
- Dr. Alton Standifer, Vice Provost for Inclusive Excellence & Chief of Staff to the Provost, Tesla Enthusiast
- Alexa Britton, Executive Director for Vidalia Convention & Visitors Bureau
- Glenn Halliday, Georgia Power Electric Transportation Program Manager
- Jessica Alcorn, Georgia Power Strategy Manager
- Michelle Brown, Coordinator for Resource Stewardship at State of Utah, Department of Government Operations
- Lyle McMillan, Director, Strategic Investments at Utah Department of Transportation
- Jenna Compton, Transportation Electrification Finance Coordinator at Oregon Department of Transportation
- Michael King, Assistant Director of Electrification & Energy, Office of Innovative Mobility at Colorado Department of Transportation
- Taylor Kuck, Launch Engineer at SpaceX and Former Engineer at Tesla
- Braden Voeller, Engineer at Tesla

 $oldsymbol{2}$

UNIVERSITY OF GEORGIA

Archway Partnership

1197 S. Lumpkin St, Suite 188, Athens, Georgia 30602 apartner@uga.edu OR archwaypartnership.uga.edu